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This study evaluated the skill of forecasting seasonal rainfall over the Greater Horn of Africa (GHA) 
using Ensemble Model Technique from a cluster of four General Circulation Climate Models (GCMs) 
from Global Producing Centers (GPCs). The spatial distribution of rainfall anomalies of the observed 
models output during extreme events showed that the ensemble model was able to simulate El-Niño 
(1997) and La-Niña (2000) years. The ensemble models did not show good skill in capturing the 
magnitude of the extreme events. The skill of the ensemble model was higher than that for the member 
models in terms of its ability to capture the rainfall peaks during the El-Niño Southern Oscillation 
(ENSO) phenomena. The analysis for the correlation coefficients showed higher values for the ensemble 
model output than for the individual models over the Equatorial region with the stations in the northern 
and southern sectors of the GHA comparatively giving low skill. The ensemble modeling technique 
significantly improved the skill of forecasting, including the sectors where individual models had low 
skill. In general, the skill of the models was relatively higher during the onset of the ENSO event and 
became low towards the decaying phase of the ENSO period. Generally, the study has shown that the 
ensemble seasonal forecasting significantly adds skill to the forecasts especially for October-December 
(OND) rainy seasons. From the study, ensemble seasonal forecasting significantly adds skill to the 
forecasts over the region. Blending dynamical ensemble forecasts with statistical forecast currently 
being produced during Regional Climate Outlook Forums (RCOFs) would add value to seasonal 
forecasts. This significantly reduces the impacts and damages associated with climate extremes over 
the region. 
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INTRODUCTION  
 
The frequent hazards and disasters like drought and 
floods over the Greater Horn of Africa (GHA) each year 
have led to high economic losses (Omondi et al., 2013; 
Ogallo et al., 2000; Bowden, 2007; Mwangi et al., 2014). 
The availability of accurate predictions mechanism with 
adequate lead time would be very essential strategy to 
address these challenges. The Global Producing Centers 
(GPCs) designated by the World Meteorological 

Organization (WMO) (Timothy et al., 2009; WMO, 2010; 
Graham, 2010) provide climate forecast products to 
alleviate the adverse impacts caused by these events. 
These model products over the region need to be  
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evaluated in terms of their skill using systematic and 
consistent methodologies (Krishnamurti et al., 2008).  

The region of the study was the Greater Horn of Africa 
(GHA) which comprises eleven countries namely: Kenya, 
Uganda, Tanzania, Ethiopia, Burundi, Rwanda, Sudan, 
South Sudan, Eritrea, Djibouti and Somalia. The region 
lies between 21°N and 12°S and 23.5°E and 52°E, and is 
characterized widely by diverse climatic conditions 
ranging from dry to humid equatorial climate conditions. 
The presence of the water bodies, mountains and valleys 
generates land-sea/land-lake breezes and slope winds 
introduce regional and local modifications of the general 
circulation. Lake Victoria, for instance, has a strong 
circulation of its own with a semi-permanent trough, 
which migrates from land to lake and lake to land during 
the night and day respectively (Bowden, 2004, 2007). 

The regional seasonal forecasts currently relies on  the 
statistical outputs obtained from historical archived 
datasets and dynamical model outputs from GPC models 
(Otieno, 2013; Ogallo et al., 2008; Mwangi et al., 2014). 
The applications of these models have been extended to 
GHA but the skill of such models in the region has not 
been extensively tested. A study by Otieno (2013) on the 
suitability of GPCs for seasonal forecasting found an 
appreciable level of skill over the Equatorial sector.  
However models registered biases in the forecasts 
especially over the Northern and southern sector of the 
GHA. 

The multi-model ensemble are some of the techniques 
currently operational over the region that reduces model 
errors and produce more skillful forecasts (Wang et al., 
2008; Krishnamurti et al., 2008; AchutaRao et al., 2006; 
Palmer et al., 2004). This study sought to assess the skill 
of ensemble models from a cluster of 4 models in 
simulating regional rainfall characteristics over the GHA. 

Past studies have shown that seasonal climate 
prediction skill is higher during OND seasons and ENSO 
events (Dutra et al., 2013; Mwangi et al., 2014). This has 
been attributed to the strong relationship between the 
OND season rains, Sea Surface Temperatures (SSTs) 
and ENSO parameters which are dominant systems 
influencing rainfall during the season (Ogallo et al.,, 2008; 
Bowden et al., 2006; Omondi et al., 2012; Lanman et al., 
2012). This study therefore concentrated on ENSO 
period of 1997 and 2000 when a strong El-Nino event of 
1997/1998 shifted to strong La-Nina event in the years 
1999/2000. 
 

DATA AND METHODOLOGY  
 

This study used four models out of eight GPCs models to 
generate ensemble models for seasonal climate 
prediction over the region. Table 1 shows the summary of 
the characteristics of the four models while Table 2 
shows the models performance based on R-square and 
regression weights calculated for each of the four models. 

Composite  Analysis  method was used to calculate the 

 
 
 
 
model weights. The simple composite for the first 
ensemble model forecast (ENSE 1) is shown in Equation 
1: 
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where, mi is the rainfall output for the 
thi  model and n is 

the total number of years used for the prediction. 
The second ensemble (ENSE 2) model was developed 

as an improvement to the first ensemble from the four 
models that had high skill (Equation 2): 
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where kb   is the 
thk  regression weight for the model, kx  

is the 
thk number of models used to generate the 

ensemble model, and iy  is the predictand. The 

regressions coefficients and the R-square explained by 
the individual models were multiplied and then divided by 
their totals to generate the weights. The best most skillful 
model got higher weight and the less skillful model 
amongst the four got the least weight. 

The data were obtained from model hindcast datasets 
from four models over the GHA region during the ENSO 
years 1997 to 2000. These were compared with observed 
rainfall data used in this study including the University of 
East Anglia gridded observed rainfall data from the 
Climate Research Unit (CRU), together with data from 
point rainfall stations over GHA based on homogenous 
zones and correlations between inter-stations.  

The spatial distributions of observed and predicted 
rainfall anomalies over the study domain were plotted. 
Correlation analysis involved determining the Spearman’s 
correlation coefficients and the computed coefficient 
value tested for significance at the 95% confidence 
interval using student T-test. The regression analysis 
method was used for the individual models to determine 
the weights of each of the individual models to generate 
the ensemble models. Table 3 shows the formulation for 
computing various scores used in the study.  

The Bias score indicates whether the forecast system 
has a tendency to under forecast or over forecast rainfall 
events. The categorical statistics derived from Probability 
of Detection (PoD) gives a simple measure of the 
proportion of rainfall events successfully forecasted by 
the model (Table 4). 
 
RESULTS AND DISCUSSION 
 
The four global forecasting models from Washington, 
Montreal, Melbourne and Moscow GPCs were subjected 
to  further  analysis  since  they  had better skill (Table 5). 
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Table 1. Characteristics of the WMO global producing centers. 
 

Model Center  Ensemble size   Resolution 

Melbourne (Melb) 
Australian Bureau of 
Meteorology  

Coupled (33) T47/L17 

Montreal (Mont)  
Meteorological Service of 
Canada 

2-tier (40) 
T32/T63/T95/2.0° × 2.0° 
(4- model combination) 

Washington (Wash)  NCEP Coupled (41) T62/L64 

Moscow (Mosc) 
Hydromet Center of 
Russia  

2-tier (10) 1.1° × 1.4°/L28 

 
 
 

Table 2. Model ranked based on R-square and regression coefficients. 

 

Model  R-Square Coefficient 

Washington 47 0.74 

Montreal 41 0.63 

Melbourne 17 1.29 

Moscow 16 1.00 

 
 
 

Table 3. Contingency table. 
 

 Forecast 
Total 

O
b
s
e
rv

e
d
  Below Normal (BN) Normal (N) Above Normal (AN) 

BN A B C M 

N D E F N 

AN G H I O 

Total  J K L T 

 
 
 

Table 4. Computation of skill. 

 

 BN N AN 

Bias J/M K/N L/O 

PoD A/M E/N I/O 

FAR 1-A/J - 1-I/L 
 
 
 

Table 5. Model weights developed 
for the four models. 
 

Model Weight 

Washington 0.36 

Montreal 0.27 

Melbourne 0.20 

Moscow 0.17 

Total 1.00 

 
 
 
Figure 1 shows the results of the spatial analysis of the 

first model ensemble (ENSE 1), second model ensemble 
(ENSE 2) and observed rainfall distributions from CRU 
for the years 1983 to 2001. The spatial distribution 
pattern of rainfall for ENSE 1 and ENSE 2 show that most 
rainfall was over the Equatorial Sector (Figure 1a and b). 
The distribution pattern of ENSE 2 model output was very 
close with the observed rainfall pattern (Figure 1c). 

Figure 2 shows the spatial distribution of the observed 
rainfall, ENSE 1 and ENSE 2 model rainfall output over 
the study domain. The rainfall distribution pattern is 
concentrated on the western sector of the GHA. ENSE 2 
depicted high simulation of observed rainfall pattern than 
ENSE 1 (Figure 2a, b, c). During El-Niño year for the 
OND season, the distribution of rainfall pattern was on 
the Equatorial sector of the study domain. These results 
are consistent with those of similar previous works over 
the region (Owiti, 2004; Conway et al., 2007; Muhati et 
al., 2007; Endris et al., 2013). The observed rainfall 
distribution is attributed mainly to the influence of the 
ITCZ, ENSO parameters and local forcing during the 
OND season. 

The rainfall distribution pattern was concentrated on the 
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Figure 1. Spatial distribution of: (a) CRU, (b) ENSE 1 and (c) ENSE 2 for 1983-2001. 

 
 
 

 
 
Figure 2. Spatial distribution of (a) CRU, (b) ENSE 1 and (c) ENSE 2 models output for 1997. 

 
 
 
western sector of the GHA over the study domain during 
La Niña episode 2000 (Figure 3). The distribution pattern 
of rainfall was better in ENSE 2 than ENSE 1 models 
output as shown in Figure 3. The distribution of rainfall 
pattern was on the Equatorial sector of the study domain. 

Table 6 shows the correlation coefficients for the 
individual models while Table 7 shows the correlation 
coefficients calculated for the ensemble models output. 
The coefficients increased especially for stations around 
the Equatorial sector. For example in Table 6, stations 
like Dagoreti, Entebbe, Gulu, Kericho and Kabale, the 
correlation coefficients are in the range of -0.5 to 0.6. In 

Table 7, the coefficients are in the range of 0.3 to 0.7. 
The improvements in the coefficients were also realized 
from the ENSE 1 to ENSE 2 model output. For example 
the coefficients for the stations: Abuhamad, Khartoum, 
Asmara and Juba for the ENSE 1 are 0.21, -0.7, 0.56 and 
0.68 respectively. For the ENSE 2 models output, the 
correlation coefficients are 0.23, 0.75, 0.56 and 0.73 
respectively.  

For the stations in the Equatorial sector, that is, 
Dagoreti, Entebbe, Gulu, Kericho and Kabale, the 
coefficients for ENSE 1 are 0.63, 0.61, 0.76, 0.71, 0.62 
and  0.33.  For  ENSE  2,  the  coefficients from the same  
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Figure 3. Spatial distribution of (a) CRU, (b) ENSE 1 and (c) ENSE 2 models output for 2000. 

 
 
 

Table 6. Correlation coefficients between CRU data at various stations 

and individual GPCs product. 
 

CRU Data  Melbourne Montreal Moscow Washington 

Abuhamad  -0.38 -0.39 0.44 0.35 

Bujumbura  0.39 0.17 0.31 0.35 

Combolcha  -0.37 0.12 0.12 0.37 

Dagoreti  0.10 -0.18 -0.14 0.66 

Djibouti  0.35 0.58 0.50 0.64 

Entebbe  0.18 0.19 0.52 0.75 

Gulu  -0.18 0.07 -0.02 0.43 

Juba  0.12 -0.18 -0.14 0.51 

Kabale  -0.56 0.36 -0.45 0.27 

Kericho  -0.04 0.08 -0.61 0.22 

Khatoum  -0.06 -0.08 -0.11 0.55 

Lamu  0.15 -0.16 -0.15 0.53 

Lodwar  0.15 -0.16 -0.15 0.53 

Makindu  0.01 -0.22 0.03 0.48 

Mtwara  -0.19 0.70 0.09 0.66 

Mwanza  -0.11 -0.28 -0.01 0.37 

Narok  0.03 -0.23 0.03 0.43 

Wajir  -0.23 -0.06 -0.43 -0.08 

 
 
 
stations are 0.65, 0.55, 0.78, 0.64, 0.62 and 0.37. The 
above findings are consistent with those of previous work 
by Ogallo et al. (2008). These results could be attributed 
to the influence of the rain bearing system like ITCZ and 
mesoscale forcing (Muhati et al., 2007). 

Figure 4 shows the spatial distribution of correlation 
coefficients for ENSE 1 and ENSE 2 models output over 
the GHA. This shows where the correlation indices were 

high and those regions where they were low during the 
OND season. High correlation values were concentrated 
around the Equatorial sector. Other regions that showed 
high correlation with the ensemble models were central 
Ethiopia and the Kenyan Coastal strip. Correlation values 
ranging between 0.4 and 0.5 were evenly distributed over 
most sectors of the study region (Figure 4b). Low 
coefficients were observed on the northern part of Kenya,  
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Table 7. Correlation between Observed, ENSE 1 and 
ENSE 2 model output rainfall anomalies respectively. 
 

Stations ENSE 1 ENSE 2 

Abuhamad 0.21 0.23 

Asmara 0.56 0.26 

Bujumbura 0.59 0.64 

Combolcha 0.29 0.43 

Dagoretti 0.63 0.65 

Djibouti -0.35 0.55 

Entebbe 0.61 0.66 

Gulu 0.76 0.78 

Juba 0.68 0.73 

Kabale -0.35 -0.37 

Kericho 0.62 0.62 

Khartoum -0.70 0.75 

Kigali 0.64 0.64 

Kisumu 0.71 0.76 

Lamu 0.71 0.76 

Lodwar 0.71 0.76 

Makindu 0.69 0.73 

Mtwara 0.71 0.70 

Mwanza 0.29 -0.54 

Narok 0.55 0.61 

Wajir -0.39 -0.59 

Wau 0.32 0.30 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 
Figure 4. Distribution of correlation coefficients for (a) ENSE 1 and (b) ENSE 2 models output over the 

study domain. The indices ranged between -0.68 and 0.76. 
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Table 8. Summary of various skill scores. 
 

Stations Ensemble Percent correct 
POD  FAR  BIAS  

HSS 
BN N AN  BN AN  BN N AN  

Abuhamad 
ENSE 1 58 50 57 67  40 42  83 100 117  30 

ENSE 2 58 50 57 67  40 42  83 100 117  42 

Bujumbura 
ENSE 1 47 33 71 86  43 40  67 50 83  28 

ENSE 2 51 17 71 80  41 37  50 50 83  43 

Asmara 
ENSE 1 47 67 43 67  32 42  83 100 117  31 

ENSE 2 59 50 43 67  29 41  100 100 100  39 

Combolcha 
ENSE 1 36 50 43 50  50 62  100 71 130  36 

ENSE 2 37 47 43 51  50 61  67 86 120  42 

Dagoretti 
ENSE 1 26 50 29 50  25 67  70 86 1  36 

ENSE 2 42 47 42 53  21 63  71 93 130  47 

Djibouti 
ENSE 1 47 33 86 83  12 37  83 71 150  52 

ENSE 2 47 33 67 82  13 33  100 78 150  55 

Entebbe 
ENSE 1 52 33 57 67  15 33  33 133 133  35 

ENSE 2 51 32 56 63  15 30  50 123 110  41 

Gulu 
ENSE 1 31 42 71 50  33 20  83 100 117  31 

ENSE 2 32 42 50 61  29 21  83 129 83  40 

Juba 
ENSE 1 26 67 71 67  20 43  83 57 100  51 

ENSE 2 31 59 50 68  32 40  100 43 123  53 

Kabale 
ENSE 1 37 0 57 50  33 23  50 130 100  32 

ENSE 2 42 0 57 60  32 31  50 121 100  37 

Kericho 
ENSE 1 58 57 71 50  20 40  67 103 83  36 

ENSE 2 58 59 33 86  50 25  67 100 67  45 

Khatoum 
ENSE 1 37 50 14 50  47 54  83 90 100  45 

ENSE 2 39 50 23 51  63 50  83 43 120  49 

Kigali 
ENSE 1 36 50 14 50  29 33  117 57 50  36 

ENSE 2 42 67 50 67  21 32  103 57 52  47 

Lamu 
ENSE 1 37 83 43 67  29 43  100 43 120  41 

ENSE 2 45 50 50 67  30 41  100 57 130  51 

Lodwar 
ENSE 1 47 33 50 67  30 47  83 57 130  28 

ENSE 2 49 33 57 69  31 40  100 53 1.2  37 

Mtwara 
ENSE 1 37 33 57 50  0 0  133 71 100  49 

ENSE 2 63 47 59 50  12 10  133 71 100  52 

Mwanza 
ENSE 1 37 33 43 33  60 33  83 100 160  24 

ENSE 2 42 33 43 33  25 29  100 71 133  37 

Wajir 
ENSE 1 32 17 33 43  50 83  83 114 100  55 

ENSE 2 33 17 33 43  33 25  100 100 100  58 

Wau 
ENSE 1 53 33 71 50  50 25  67 129 100  32 

ENSE 2 53 33 71 50  40 30  67 129 100  37 

 
 
 
Sudan; north eastern part of Somalia; and southern part 
of Tanzania of the study domain. The results could be 
attributed to large scale systems like ITCZ which are the 
main drivers of seasonal rainfall over the Equatorial 
sector. The results revealed an improvement in the ability 
of the ensemble models to replicate the climate features 
around these sectors better with high skill and accuracy 
than the individual models.  

Table 6 shows the results for skill score evaluation of 
the individual models while Table 7 shows the skill 
analysis for the ensemble model. The skill score of ENSE 
1 and 2 in various regions is summarized in Table 8. The 
number of correct forecasts significantly increased 
compared with those from the individual model output 
(Table 8). For example, the number of cases where the 
models predicted rainfall events correctly was above 50%  
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Table 9. PC (%), POD (%), FAR (%), BIAS (%) and HSS (%) for the ENSE 1 and ENSE 2 
models for BN, N and AN categories. 

 

Station Model PC 
POD  FAR  BIAS 

BN N AN  BN AN  BN N AN 

Abuhamad  Mon and Mosc  53 33 57 66  60 0  83.3 142 66 

Bujumbura  Melb  53 50 16.7 86  50 40  100 50 140 

Combolcha  Wash  42 50 28 50  50 62  100 70 130 

Dagoretti  Mon  42 50 29 50  25 67  70 86 150 

Djibouti  Wash 68 33 86 83  0 37  33 130 133 

Entebbe  Wash  52 33 57 67  0 50  33 133 133 

Juba  Mont and Wash  68 67 71 67  20 43  80 100 100 

Kabale  Melb 42 57 86 33  33 35  0 200 50 

Kericho  Mosc and Mont 63 67 71 50  20 40  80 130 80 

Khartoum  Wash 37 50 14 50  50 57  100 90 100 

Lamu  Wash and Mon  63 83 43 67  29 43  120 70 120 

Lodwar  Wash  47 33 43 67  33 50  50 110 130 

Mtwara Mon and Mel 63 33 100 50  0 0  30 200 50 

 
 
 
in 42% of the stations for the individual models (Table 7).  
The number of percent correct forecasts above 50% was 
observed in 52% of the stations for the Ensemble models 
(Table 8). Improvement in terms of correct forecasts was 
also noted in ENSE 2. The models performance 
improved for stations in the northern sector from 32-53% 
to 37-58%, as shown in Tables 7 and 8 respectively. This 
shows the ability of the Ensemble models to improve the 
resolution of the systems influencing rainfall over the 
region. 

For the ensemble models, the HSS values improved 
across some stations with at least 37% of the stations 
obtaining values above 50% in the Equatorial sector 
(Table 8). This is compared to only 26% of the stations 
getting above 50% for the individual models (Table 7). 
From the analysis of Bias score for BN, N and AN 
categories, the perfect score of 100% was achieved in 
63% of the stations for the model Ensembles (Table 9). 
The cases of ensemble model giving forecast nearing 
almost perfect score was achieved in 53% of the stations. 

The analysis of PoD score for the ensemble models 
output indicates that 63% of the stations predicted above 
50% for the normal category, 79% of the stations 
predicted above 50% for the above normal category and 
42% instances predicted above 50% for below normal 
category. Most of the stations around the Equatorial 
sector recorded score above 50%, while stations in the 
northern and southern regions obtained values above 
50% in most instances indicating an improvement in the 
skill of the forecast using ensemble approach (Table 8). 

ENSE 2 model over these regions successfully 
forecasted more than 50% of the rainfall events. The 
improvement in the forecast skill by ensemble model 

shows the model ability to resolve correctly the systems 
that influence rainfall over the Equatorial, Northern and 
Southern sectors of the study domain well. 

The results for FAR score for the below normal and 
above normal categories indicate that most stations 
around the Equatorial region recorded score less than 
50% while those in the northern and southern sector of 
the region slightly scored below 50% in few cases. 
Stations that recorded score more than 50% reduced in 
the ensemble models than for the individual ones (Tables 
7 and 8). The Ensemble models across the stations 
recorded less than 50% in most instances except for a 
few stations to the north of the GHA. 

The Ensemble models had better score than the 
individual model output (Table 8) with ENSE 2 models 
having better skill than the ENSE 1 model. From Table 7, 
cases of over forecasting and under-forecasting were 
many in individual models output especially for most 
stations in the Northern and Southern sectors. The ENSE 
1 and ENSE 2 models had close to 48% of the stations of 
perfect score, though ENSE 2 had many instances where 
the score was above 50% (Table 8). 

There are at least 53% instances when the PoD score 
is above 70%. These stations like Bujumbura, Gulu, 
Kericho and Djibouti are those in the Equatorial and 
Northern sectors. The score is low for some stations in 
the Southern sector of the GHA (Tables 8 and 9), 
implying the models inability to detect the signal of rainfall 
over these sectors. 
 
SUMMARY AND CONCLUSIONS 
 
Assessment  of  the  ability  of GPC models in simulating  



 
 

 
 
 
 
regional rainfall within the GHA is important for socio-
economic planning and risk reduction associated with 
climate extremes. The evaluation of the performance of 
an ensemble model from a cluster of 4 GPCs models in 
modeling GHA rainfall was done using graphical plots, 
correlation, regression, skill scores analysis, composite 
analysis and weighted method. 

The ensemble model was able to simulate the ITCZ rain-
bearing system and the rainfall distribution over the GHA 
during the OND season during both El Nino and la Nina 
episodes. The ensemble models correctly showed higher 
quantities of rainfall in the Equatorial belt than the individual 
models. The individual models tended to under/over-predict 
the amount of rainfall over the Northern and Southern 
sectors of the GHA region; the rainfall was also displaced. 
However, the ensemble modeling improved the skill over 
these sectors by correcting the biases from the individual 
models. 

There is need for more diagnostic studies on the 
representation of the local processes like land processes, 
soil moisture, convection, vegetation, mountainous regions, 
lake and water bodies in the GPC climate models. The study 
has demonstrated that combinations of clusters of models 
are potent tools for predicting the rainfall distribution over 
certain parts of the GHA. Regression equations developed 
from models with the highest correlation can be used to 
improve dynamical prediction. Ensembles technique should 
be applied to the best model clusters to enhance the 
accuracy and skill in the forecasts over the GHA. 
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