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In this paper, Exp-function method was used to construct solitary solutions of the generalized
Drinfel’d-Sokolov-Wilson (DSW) system. It is shown that the Exp-function method, with the help of
symbolic computation, provides a straightforward and powerful mathematical tool to solve nonlinear
evolution equations with higher order nonlinearity. It is observed that the suggested scheme is highly
reliable and may be extended to other nonlinear differential equations.
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INTRODUCTION

The investigation of travelling wave solutions of nonlinear
evolution equations plays an important role in the study
and the mathematical modeling of diversified physical
phenomena. Finding exact solutions of nonlinear
evolution equations (NLEEs) has become one of the
most exciting and extremely active areas of research
investigation. The investigation of exact travelling wave
solutions to nonlinear evolution equations plays an
important role in the study of non-linear physical
phenomena.

Recently many new approaches to nonlinear evolution
equations have been proposed, for example, the
variational iteration method (He, 1999; Noor et al., 2008,
2009), the tanh-method (Wazwaz, 2005), the
homogeneous balance method (Wang, 1996; Fan and
Zhang, 1998; Xigiang et al., 2006), the F-expansion
method (Fan and Jian, 2002; Zhang et al., 2006), the
sine—cosine method (Wazwaz, 2004), the extended Fan’s
sub-equation method (Yomba, 2005), the simplest
equation method (Kudryashov, 2005), the (G/G)-
expansion method (Wang et al., 2008) and so on.

Also a new method called the Exp-function method was
first proposed by He and Wu (2006) and was successfully
applied to a KdV equation with variable coefficients
(Zzhang, 2007), high-dimensional nonlinear evolution
equations (Noor et al., 2010), generalized equations with
higher order nonlinearity (Zhou et al., 2008; Misirli and

Gurefe, 2010; Gomez and Salas, 2010), differential-
difference equations (Bekir, 2010; Noor et al., 2008),
system of nonlinear partial differential equation (Noor et
al., 2009), stochastic equation (Dai and Zhang, 2009),
etc. On the other hand, the Exp-function method was
extended to construct multi-wave solutions to nonlinear
evolution equations in Noor et al. (2012) and Dai et al.
(2010).

In this paper, the Exp-function method was applied to
the generalized Drinfel’d—Sokolov-Wilson system given
in Wazwaz (2006) and Sweet and Gorder (2010) as:

u, + (v”)X =0, (1)
v, —av,, +3bu,v+3duv, =0. ()

EXP-FUNCTION METHOD

Considering the general nonlinear partial differential
equation of the type, we have the following equation:

P(u,u,,u,, U, Uy, Uy,,...) =0. 3)
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Using a transformation, the following is obtained:

Where K and ware constants, we can rewrite equation
(3) in the following nonlinear ODE:

Q(u,u’,u’,u” ,u",..)=0. (5)

Where the prime denotes derivative with respect to 77.

According to the exp-function method, which was
developed by He and Wu (2006), we assume that the
wave solutions can be expressed in the following form:

o ., epng]
ulr)= >3, b, exp[my]

(6)

Where p,g,c and d are positive integers which are

known to be further determined, and &, and b, are

unknown constants. We can rewrite equation (6) in the
following equivalent form:

()= exp(cn)+...+a_, exp(-dn)

= . (7)
b, exp(pn)+...+b_, exp(—an)

To determine the value of C and p, the linear term of the

highest order of equation (6) was balanced with the
highest order nonlinear term. Similarly, to determine the

value of dandq, the linear term of the lowest order of

equation (5) was balanced with the lowest order non
linear term.

SOLUTION PROCEDURE

Here, the exp-function method was applied for the
generalized Drinfel’d—Sokolov—Wilson (DSW) system.

GENERALIZED
SYSTEM

DRINFEL’'D-SOKOLOV-WILSON

This study considered the generalized Drinfel’d—Sokolov—
Wilson (DSW) system:

u, + (v”)X =0,
v, —av,, +3bu,v+3duv, =0.

Introducing a transformation as 77 = kX — at, Drinfel'd—

Sokolov-Wilson (DSW) system can be converted into
ordinary differential equations:

PSTI (V) ) ®)

—av' —ak?v" +3bu'v+3duv’ =0. (9)

Where the prime denotes the derivative with respect to
n.
Integrating equation (8), we obtained:

n

vV +C

u= (10)

w
Where C is an integration constant.
Substituting U into equation (9) yields:
ao(n+1)n+ 2k (V') ~6(on+d " + (1+1)n+2)e’ ~3cd 2 =0 (11)

Using the transformation:

1
V=¢g" (12)
Equation (11) becomes:
aa(n+1)n+2)k? (¢} —6n°(bn+d}g* +n?(n+1)n+2)ew® —3cd Jp* =0(13)

The trial solution of equation (13) can be expressed as
follows:

_a.op(en)+..+a, op(-dy) (4
¢(77) bp exp(pf])—i—...-i-b_q EXD(—CW)

To determine the value of C and p, the linear term of

the highest order of equation (13) was balanced with the
highest order nonlinear term. Proceeding as before, we
obtained

p=candd=q.
Case 3.1.1

We can freely choose the values of C and d , but it will
be illustrated that the final solution does not strongly
depend upon the choice of values of ¢ and d. For
simplicity, we set p=c=1 and q=d=1; thus
equation (14) reduces to:

aoply]+a, +aop[-1] N
)= oplnl o, b opln] =

Substituting equation (15) into equation (13), we have:



of V(X, t) for

Graph
b,=1b,=02k=3a=01b=lw=2d=1c=1,n=1.

Figure 1.

l[c,, exp(417)=c, exp(3n)+c, exp(2n) + ¢, exp (i) + ¢, + ¢, exp(-7)+c_, exp(- 2:7)} _ (16)
Al+c,exp(-3p)+c, en(-47)
Where A= (b, exp(r7)+b, + b, exp(-7))*. ¢, are

constants obtained by Maple 17. Equating the

coefficients of exp(nn) to be zero, we obtained:

f.=0c,=0c,=0c,=0c,=0,c,=0,,=0c,=0,c,=0} (17)

For the solution of equation (17), we have the following
solution set which satisfies the given generalized
Drinfel’d—Sokolov—Wilson system:

1st solution set

~Jaof3ed —o? n —I,(3en2d — n%w? +9cnd —3ne? +6cd — 200°)
k=—————a,=0a, =

aw T 3(bn+d)

1b?
=0,b, =b,,b, =by,b, ==
a 1 = 04,0 =00, 0, 4,

We therefore obtained the following generalized solitary
solution (Figure 1):

—1(b,(8cnd —n*w” +9cnd —3nw® + 6cd —200°))

B(x, 1) = .
_xvaw(3cd—w? bm)t b2 xvaw(3cd—w? wa
2] 0 2]
(bn+d b e a + by + b, e a
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v(x,t)  for
b =1b,=1b,=2k=3a=1b=2w=1d=Lc=Ln=1"

Figure 2. Graph of

—1(b,(38cn®d — n*w? + 9cnd — 3nw? + 6cd — 207 )
_xJaw(3cd —w? AN b2 7xﬂ/aw 3cd —w? )n ot
@ 170 @
(bn + d b_,e a + by + e a

v(x,t) =

“b,

2nd solution set

—b,l(Sand —n%w? +9cnd —3nw? + 6cd —sz) a -
6(bn+d) e

—by(3cn?d —n?w? +9cnd —3ne® +6cd —20°) b, (3cn’d —n’w? +9cnd —3ne’ + 6ed — 200°)
6(bn+d) &= 6(bn+d)

b, =b by =by,b, =b,

k=k,a, =

We therefore obtained the following generalized solitary
solution (Figure 2):

—(3cn?d - n?0” +9cnd —3n0° +6¢d = 20° b,y u N (3cn%d —n?w? + 9cnd —3nw? + 6cd — 20° ), B

6(nb+d) 6(nb+d)
b1(3cn2d —n’w’ +9cnd —3nw’ +6ed —sz)em“
6(nb+d)
X,1) =
#(x1) boe ™ 25, 7 6]

7(30n2d —n’w’ +9cnd - 3nw® + 6cd 721112)11 ot (3cn2d —nw?® +9cnd - 3ne? + 6ed —Zqu)J,,
6(nb+d) 6(nb+d)
b](Band —n’w’ +9cnd - 3ne® + 6cd —Zmz) et

6(nb+d)

v(x,t) =
) REETRTrD
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Figure 3. V(X, t) for

Graph of

a,=1b =1lk=la=lb=2w=1d=1c=1Ln=1"

Case 3.1.2

Ifp=c=2, and q=d =1, then equation (14) reduces
to:

_a,eplylraeplhlraraepln g
()= .
b, exp[27]+b, exp[n]+a, + b, exp[-7]

Proceeding as before, we obtain the following solution
sets:

1st solution set

Jao(ed -0t — 4b,(3cn°d —n’’ +9cnd — 3w’ + bed — 20°)
=————,a,=04a,=2a,a = ,a, =0,
aw 9(nb+d)

b, = —27a2(nb+d)’
b, (3en’d —n%w? + 9ond —3ne” + 6cd — 207 )
b = 4(3cn*d - n?e” +9cnd - 3nw” + 6cd — 200° b?
: 27a,(nb +d)

5,by =0,b, =b,,

We therefore obtained the following generalized solitary
solution (Figure 3):

xf2ofBd -0
(b1(3cn2d -n’w?® +9cnd — 3nw?® +6ed — sz))eT

+at

a, —
Jot)= 9(nb+d)

3cd - 0?
) R TR )
278l (nb+d)’e = T R

+be +

4p,(3cn%d —n’0” + 9cnd — 3o + 6cd — 207

2xyaol3ed -0? h

4
(3cn’d —n?w? +9cnd —3nw? +6ed — 20 ple

27a,(nb+d)

+20t

V(X,t) for
b =1b, =Lk=La=1b=2,w=1d=Lc=Ln=1.

Figure 4. Graph of

4 xyJanl3cd 70.2}‘M‘
a,————— b, (3cn’d —n’e” + 9cnd —3ne” + 6cd — 207
9(nb+d)
v(x,t) =
xaofedo’h .
27a2(nb+d)’e “ piacdsid enh LI
+be +

4b1(3t:nzd —n’w® +9cnd —3ne® + 6cd —Zmz)z

4 2xy a(ul:dfn)z}uzu
—— | (3end —n0® +9cnd —3nw?® +6cd —20° ple
27a,(nb+d)

2nd solution set

aw 3(nb+d)
b, =0,b,=0,b =b;,b, =b,

aw(3cd — w? _ 24 n2 2 _ 2 9.2
{k-" o 1 h,a,,:o,aozo,alzo,azz bz(3cnd n“w” +9cnd —3nw” +6¢d — 20 )}

We therefore obtained the following generalized solitary
solution (Figure 4):

b 2[_x\ am(3cd—w?® h+mJ
—§(3cn2d —nw? +9cnd —3nw” + 6¢d — 200° o

#(x,t)= =
e, 2[—7‘\/"‘“’(:3‘*‘“ m]
(nb+d) be aw +b,e
*
b Z[Xa,:,,z M]
—?2(3cn2d —n’w” +9cnd —3nw? + 6cd — 207 J ”
v(x,t)=

aw

2{—
aw +b,e

(nb+d) be
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V(X,t) for
b, =1b,=01b,=1b,=2k=3a=01b=2w=1d=Lc=Ln=1-

Figure 5.

Graph of

3rd solution set

~ —(8en?d —n?? + 9ond - 3nw” + 6cd — 200° b,

_ —(3cn%d —n?w® +9cnd —3ne” +6cd — 20 b, a
1Ay

&= 6(nb+d) 6(nb+d)
_ —(3en?d —n?w? + 9ond - 3nw? + 6cd - 200 ), a —(3en?d —n?w? + 9ond - 3new? + 6cd - 200° b,
& 6(nb+d) 2 6(nb+d)

b, =h,b, =byb, =b,b, =b,,k =k

We therefore obtained the following generalized solitary
solution (Figure 5):

—(8cn%d —n%w? + 9end —3n0” +6cd — 207 e B (3en2d = n%0? + 9ond —3n0” +6cd — 207 b
6(nb+d) 6(nb +d)
b,(3cn?d —n’w? +9cnd - 3ne” + 6ed — 20° % b, (3cn’d —n%w” +9cnd —3nw? + 6ed — 207 20k )

o

6(nb+d) 6(nb+d)

#lx.t)=

(b e +b°+blexku:x +b2e2[xkuu”)

(3en’d — %0 + 9cnd — 3ne” + 6cd — 20,
6(nb+d)

b, (3cn’d = n%e’ +9cnd —3nw* + bed — 20 204

6(nb+d)

~(3cn’d —n’w? +9cnd — 3w’ + bed — 202 e
6(nb+d)
by(3en’d —n?w? + 9end —3ne’ + 6cd — 207
6(nb+d)

(b,;f“’“x +b, +hexktM +b2971xk—«x))

In both cases, for different choices of C, p, d andq we

get the same soliton solutions which clearly illustrate that
the final solution does not strongly depends upon these

Int. J. Phy. Sci. 093

parameters.
CONCLUSION

Exp-function method is applied to construct solitary
solutions of the generalized Drinfel’d—Sokolov—Wilson
system. The obtained results show that the applied
method is very a convenient and powerful mathematical
tool for solving nonlinear evolution equations in
mathematical physics. The Exp-function method can be
also proposed for other nonlinear evolution equations
with higher order nonlinearity. The reliability of the
proposed algorithm is fully supported by the
computational work, the subsequent results and
graphical representations. It was observed that the exp-
function method is very useful for finding solutions of a
wide class of nonlinear problems.
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