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In this paper, Exp-function method was used to construct solitary solutions of the generalized 
Drinfel’d–Sokolov–Wilson (DSW) system. It is shown that the Exp-function method, with the help of 
symbolic computation, provides a straightforward and powerful mathematical tool to solve nonlinear 
evolution equations with higher order nonlinearity. It is observed that the suggested scheme is highly 
reliable and may be extended to other nonlinear differential equations. 
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INTRODUCTION 
 
The investigation of travelling wave solutions of nonlinear 
evolution equations plays an important role in the study 
and the mathematical modeling of diversified physical 
phenomena. Finding exact solutions of nonlinear 
evolution equations (NLEEs) has become one of the 
most exciting and extremely active areas of research 
investigation. The investigation of exact travelling wave 
solutions to nonlinear evolution equations plays an 
important role in the study of non-linear physical 
phenomena.  

Recently many new approaches to nonlinear evolution 
equations have been proposed, for example, the 
variational iteration method (He, 1999; Noor et al., 2008, 
2009), the tanh-method (Wazwaz, 2005), the 
homogeneous balance method (Wang, 1996; Fan and 
Zhang, 1998; Xiqiang et al., 2006), the F-expansion 
method (Fan and Jian, 2002; Zhang et al., 2006), the 
sine–cosine method (Wazwaz, 2004), the extended Fan’s 
sub-equation method (Yomba, 2005), the simplest 
equation method (Kudryashov, 2005), the (G/G)-
expansion method (Wang et al., 2008) and so on.  

Also a new method called the Exp-function method was 
first proposed by He and Wu (2006) and was successfully 
applied to a KdV equation with variable coefficients 
(Zhang, 2007), high-dimensional nonlinear evolution 
equations (Noor et al., 2010), generalized equations with 
higher order nonlinearity (Zhou et al., 2008; Misirli and 

Gurefe, 2010; Gomez and Salas, 2010), differential-
difference equations (Bekir, 2010; Noor et al., 2008), 
system of nonlinear partial differential equation (Noor et 
al., 2009), stochastic equation (Dai and Zhang, 2009), 
etc. On the other hand, the Exp-function method was 
extended to construct multi-wave solutions to nonlinear 
evolution equations in Noor et al. (2012) and Dai et al. 
(2010).  

In this paper, the Exp-function method was applied to 
the generalized Drinfel’d–Sokolov–Wilson system given 
in Wazwaz (2006) and Sweet and Gorder (2010) as: 
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EXP-FUNCTION METHOD 
 
Considering the general nonlinear partial differential 
equation of the type, we have the following equation: 
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Using a transformation, the following is obtained: 
 

,tkx                                                                  (4) 

 

Where k and  are constants, we can rewrite equation 

(3) in the following nonlinear ODE: 
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Where the prime denotes derivative with respect to  . 

According to the exp-function method, which was 
developed by He and Wu (2006), we assume that the 
wave solutions can be expressed in the following form: 
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Where , ,p q c  and d   are positive integers which are 

known to be further determined, and na  and mb  are 

unknown constants. We can rewrite equation (6) in the 
following equivalent form: 
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To determine the value of c  and p , the linear term of the 

highest order of equation (6) was balanced with the 
highest order nonlinear term. Similarly, to determine the 

value of d and q , the linear term of the lowest order of 

equation (5) was balanced with the lowest order non 
linear term. 
 
SOLUTION PROCEDURE 
 
Here, the exp-function method was applied for the 
generalized Drinfel’d–Sokolov–Wilson (DSW) system. 
 
GENERALIZED DRINFEL’D–SOKOLOV–WILSON 
SYSTEM 
 
This study considered the generalized Drinfel’d–Sokolov–
Wilson (DSW) system: 
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Introducing a transformation as ,tkx    Drinfel’d–

Sokolov–Wilson (DSW) system can be converted into 
ordinary differential equations: 
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Where the prime denotes the derivative with respect to 
 . 

Integrating equation (8), we obtained: 
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Where c   is an integration constant. 

 
Substituting u  into equation (9) yields: 

 

           0321621 22222   vcdnnvdbnvknna n    (11) 

 
Using the transformation: 
 

nv
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Equation (11) becomes: 
 

           0321621 2223222   cdnnndbnnknna (13) 

 
The trial solution of equation (13) can be expressed as 
follows: 
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To determine the value of c  and p , the linear term of 

the highest order of equation (13) was balanced with the 
highest order nonlinear term. Proceeding as before, we 
obtained 
 

cp   and qd  . 

 
Case 3.1.1 
 

We can freely choose the values of c  and d , but it will 

be illustrated that the final solution does not strongly 

depend upon the choice of values of c  and d . For 

simplicity, we set 1 cp  and 1 dq ; thus 

equation (14) reduces to: 
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Substituting equation (15) into equation (13), we have: 



 
 
 
 

 
 

Figure 1. Graph of  txv ,  for 

1,1,1,2,1,1.0,3,2.0,1 01  ncdbakbb  .
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Where     4101 expexp   bbbA , ic  are 

constants obtained by Maple 17. Equating the 
 

coefficients of  exp n  to be zero, we obtained: 

 

 .0,0,0,0,0,0,0,0,0 432101234   ccccccccc   (17) 

 
For the solution of equation (17), we have the following 
solution set which satisfies the given generalized 
Drinfel’d–Sokolov–Wilson system: 
 
1st solution set 
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We therefore obtained the following generalized solitary 
solution (Figure 1): 
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Figure 2. Graph of  txv ,  for 

1,1,1,1,2,1,3,2,1,1 011   ncdbakbbb  . 
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2nd solution set 
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We therefore obtained the following generalized solitary 
solution (Figure 2): 
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Figure 3. Graph of  txv ,  for 

1,1,1,1,2,1,1,1,1 10  ncdbakba 
. 

 
 

 

Case 3.1.2 
 

If ,2 cp  and 1 dq , then equation (14) reduces 

to: 
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Proceeding as before, we obtain the following solution 
sets: 
 

1st solution set 
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We therefore obtained the following generalized solitary 
solution (Figure 3): 
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Figure 4. Graph of  txv ,  for 

1,1,1,1,2,1,1,1,1 21  ncdbakbb  .
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2nd solution set 
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We therefore obtained the following generalized solitary 
solution (Figure 4): 
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Figure 5. Graph of  txv ,  for 

1,1,1,1,2,1.0,3,2,1,1.0,1 0121   ncdbakbbbb  . 

 
 
 
3rd solution set 
 

 
 

 
 

 
 

 
 


























































kkbbbbbbbb

dbn

bcdncndndcn
a

dbn

bcdncndndcn
a

dbn

bcdncndndcn
a

dbn

bcdncndndcn
a

,,,,

6

26393
,

6

26393

6

26393
,

6

26393

22110011

2

22222

2
1

22222

1

0

22222

0
1

22222

1





 

 
We therefore obtained the following generalized solitary 
solution (Figure 5): 
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In both cases, for different choices of c , p , d  and q  we 

get the same soliton solutions which clearly illustrate that 
the final solution does not strongly  depends  upon  these  
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parameters. 
 
CONCLUSION 
 
Exp-function method is applied to construct solitary 
solutions of the generalized Drinfel’d–Sokolov–Wilson 
system. The obtained results show that the applied 
method is very a convenient and powerful mathematical 
tool for solving nonlinear evolution equations in 
mathematical physics. The Exp-function method can be 
also proposed for other nonlinear evolution equations 
with higher order nonlinearity. The reliability of the 
proposed  algorithm  is  fully  supported  by  the  
computational  work,  the subsequent  results  and 
graphical  representations. It was observed that the exp-
function method is very useful for finding solutions of a 
wide class of nonlinear problems. 
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